Quantum Tunneling: From Bubbles of Nothing to String Theory Dynamical Cobordism

Jesús Huertas

IFT, Madrid

String Phenomenology 2022, Liverpool

References

Tunneling potential method [Espinosa, '18]

Short review here

Application to the study of String Dynamical Cobordisms [Angius, Calderón, Delgado, JH, Uranga, '22]

Roberta's talk

Application to the study of Bubbles of Nothing [Blanco-Pillado, Espinosa, JH, Sousa, in progress]

This talk

Motivation

Bubbles of Nothing are important in...

...assessing the stability of vacua, in particular our universe

...studies of the behaviour of models with compactified dimensions

...String Theory Dynamical Cobordism

The Tunneling Potential Method

[Espinosa, '18]

$$S = \int d^{d+1}x \sqrt{-g} \left(\frac{1}{2\kappa} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right)$$
 Einstein gravity + scalar
$$ds^2 = d\xi^2 + \rho(\xi)^2 ds_d^2$$
 Codimension-1 metric, with internal curvature

The Tunneling Potential Method

[Espinosa, '18]

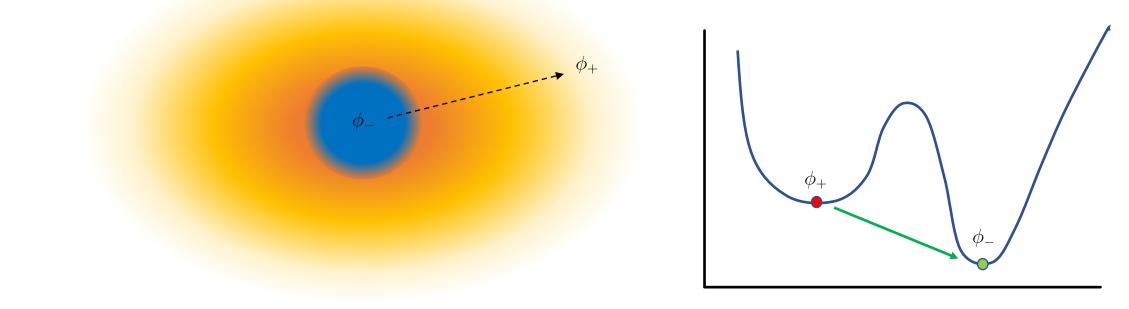
Coleman-de Luccia tunneling

FLRW metric (inflation)

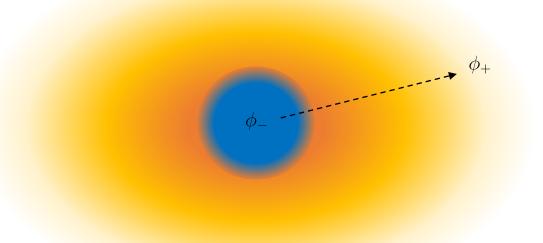
Gravitational domain walls

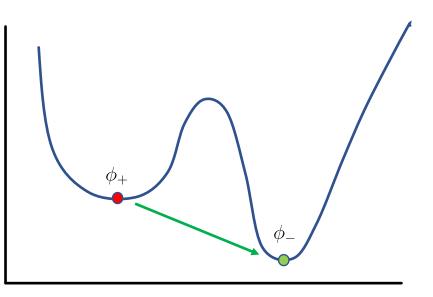
Running solutions: Dynamical Cobordism in String Theory

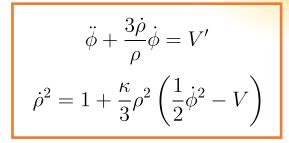
[Coleman, de Luccia, '80]



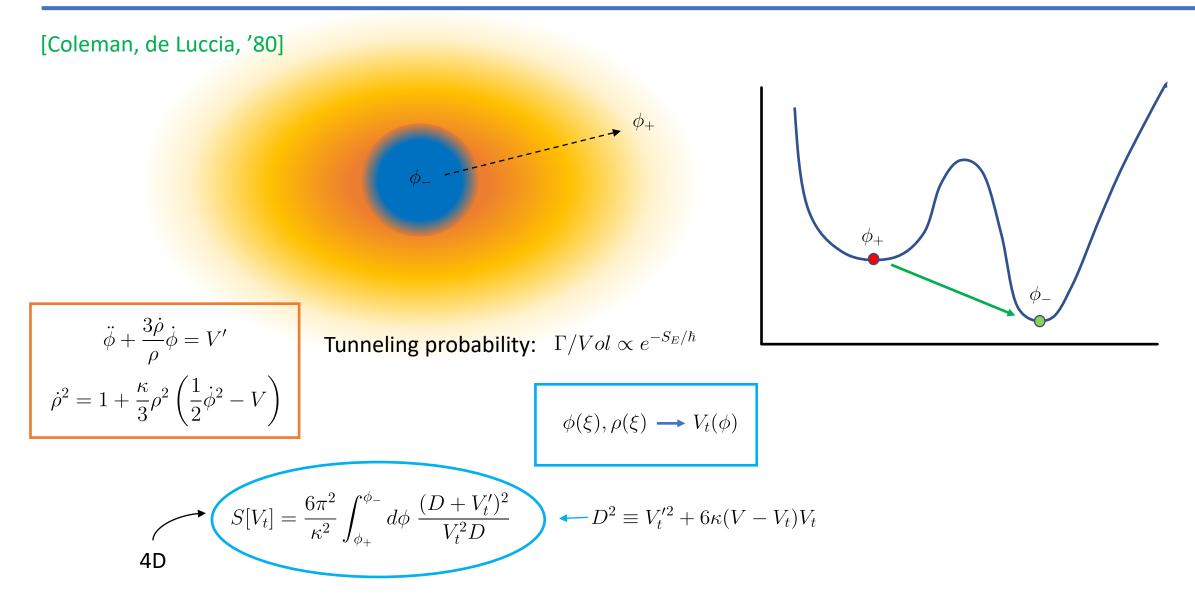
[Coleman, de Luccia, '80]

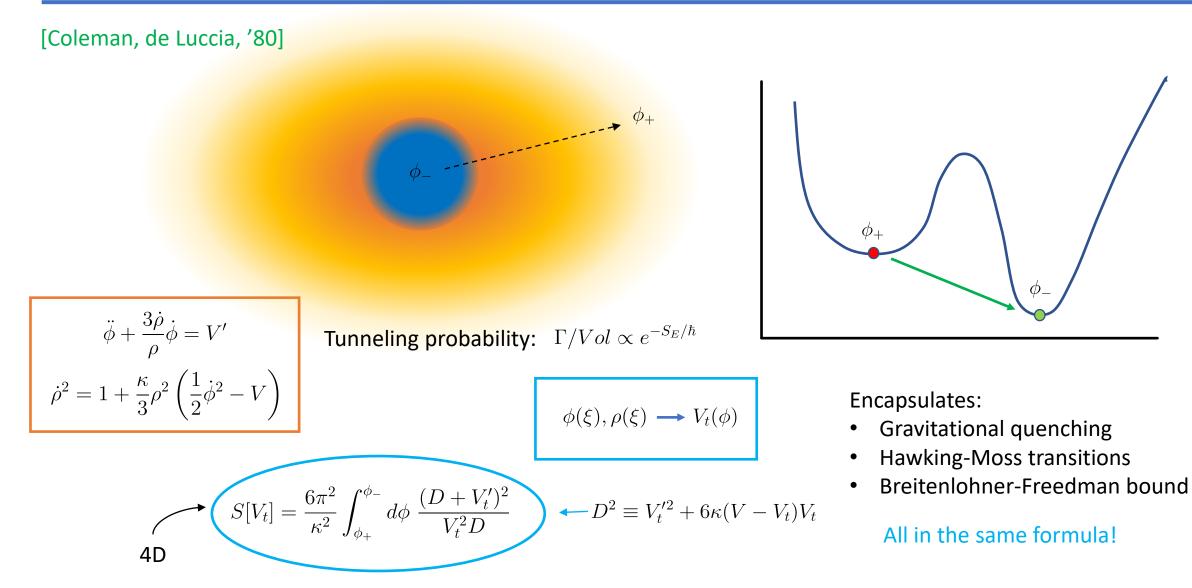






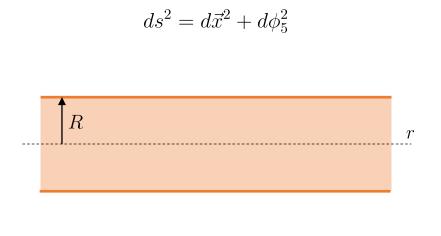
Tunneling probability: $\Gamma/Vol \propto e^{-S_E/\hbar}$





Witten's Bubble of Nothing

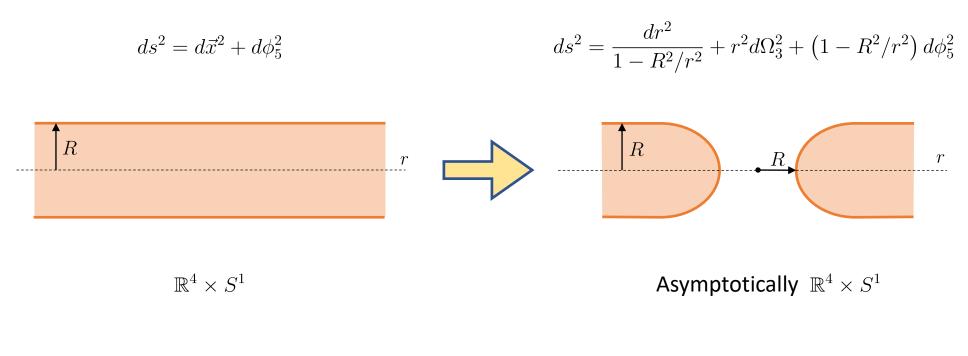
[Witten, '82]



 $\mathbb{R}^4\times S^1$

Witten's Bubble of Nothing

[Witten, '82]



Tunneling probability given by $S_E = (\pi m_P R)^2$

Near the boundary $\mathbb{R}^2 \times S^3$

 $ds^2 \simeq d\xi^2 + \xi^2 d\phi_5^2 + R^2 d\Omega_3^2$

Witten's BoN as a CdL tunneling

[Dine, Fox, Gorbatov, '04] [Draper, García, Lillard, '21]

$$ds_5^2 = e^{\sqrt{\frac{2}{3}}\phi(\xi)} (d\xi^2 + \rho(\xi)^2 d\Omega_3^2) + e^{-2\sqrt{\frac{2}{3}}\phi(\xi)} d\phi_5^2 \qquad S_5 = \int d^5x \sqrt{-g_5} \frac{R_5}{2}$$

Witten's BoN as a CdL tunneling

[Dine, Fox, Gorbatov, '04] [Draper, García, Lillard, '21]

$$ds_{5}^{2} = e^{\sqrt{\frac{2}{3}}\phi(\xi)}(d\xi^{2} + \rho(\xi)^{2}d\Omega_{3}^{2}) + e^{-2\sqrt{\frac{2}{3}}\phi(\xi)}d\phi_{5}^{2} \qquad S_{5} = \int d^{5}x\sqrt{-g_{5}}\frac{R_{5}}{2}$$
$$ds_{4}^{2} = d\xi^{2} + \rho(\xi)^{2}d\Omega_{3}^{2} \qquad S_{4} = \int d^{4}x\sqrt{-g_{4}}\left(\frac{1}{2}R_{4} - \frac{1}{2}(\partial\phi)^{2}\right) \qquad \text{No potential}$$

Radius of ϕ_5 going to zero implies that ϕ goes to <u>infinity</u> Radius of ϕ_5 going to R implies that ϕ goes to zero \leftarrow Asymptotic behaviour

Witten's BoN as a CdL tunneling

[Dine, Fox, Gorbatov, '04] [Draper, García, Lillard, '21]

$$ds_{5}^{2} = e^{\sqrt{\frac{2}{3}}\phi(\xi)}(d\xi^{2} + \rho(\xi)^{2}d\Omega_{3}^{2}) + e^{-2\sqrt{\frac{2}{3}}\phi(\xi)}d\phi_{5}^{2} \qquad S_{5} = \int d^{5}x\sqrt{-g_{5}}\frac{R_{5}}{2}$$
$$ds_{4}^{2} = d\xi^{2} + \rho(\xi)^{2}d\Omega_{3}^{2} \qquad S_{4} = \int d^{4}x\sqrt{-g_{4}}\left(\frac{1}{2}R_{4} - \frac{1}{2}(\partial\phi)^{2}\right) \qquad \text{No potential!}$$

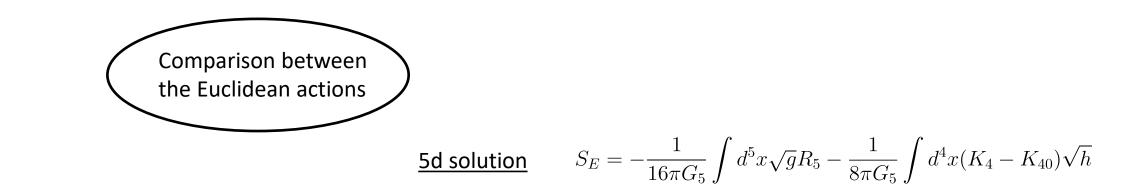
Radius of ϕ_5 going to zero implies that ϕ goes to <u>infinity</u> Radius of ϕ_5 going to R implies that ϕ goes to zero Asymptotic behaviour

$$(V_t')^2 = \frac{3}{2} V_t [V_t'' - 2V_t] \longrightarrow (V_t(\phi) = -\frac{6}{R^2} \sinh^3(\sqrt{2/3}\phi))$$

$$S[V_t] = \frac{6\pi^2}{\kappa^2} \int_{\phi_+}^{\phi_-} d\phi \; \frac{(D+V_t')^2}{V_t^2 D}$$

$$S_E = (\pi m_P R)^2 \quad \frac{\text{Correct}}{\text{result!}}$$

Different approaches to Witten's BoN



$$S_E = 2\pi^2 \int_0^\infty d\xi \,\rho^3 \left[-\frac{m_P^2}{2} R_4 + \frac{1}{2} \dot{\phi}^2 + \sqrt{\frac{3\kappa}{2}} \left(\ddot{\phi} + \frac{3\dot{\rho}}{\rho} \dot{\phi} \right) \right] - 2\pi^2 \rho^2 \left(3m_P^2 \dot{\rho} + \sqrt{\frac{\kappa}{6}} \rho \dot{\phi} \right) \bigg|_0^\infty \qquad \qquad \underline{\text{4d KK reduction}}$$

Tunneling potential method

$$S_E[V_t] = \frac{6\pi^2}{\kappa^2} \int_0^\infty d\phi \, \frac{(D+V_t')^2}{V_t^2 D}$$

$$D^2 \equiv V_t'^2 + 6\kappa(V - V_t)V_t$$

More general BoNs

- Compactification of higher dimensional manifolds
- Introduction of potentials for the fields
- Other type of asymptotic vacuum, such as dS or AdS
- String theory setups: Fluxes, branes on the surface, orientifolds. Relation to Dynamical Cobordism.

In the following slides, I will focus on smooth sealing of spacetime on the surface of the bubble

Types of asymptotic decays

In the core of the BoNs,
$$\phi(\xi = 0) \to \infty$$
, so $\frac{d\phi}{d\xi} \to \infty$ and thus $V_t \to \infty$
 $V_t(\phi) \equiv V(\phi) - \frac{1}{2} \left(\frac{d\phi}{d\xi}\right)^2$

So we impose
$$V_t \to \infty$$
 and solve the EoM $((1+d)V'_t - dV')V'_t = 2d(V_t - V)\left[V''_t + \frac{2\kappa}{d-1}(dV - (d-1)V_t)\right]$

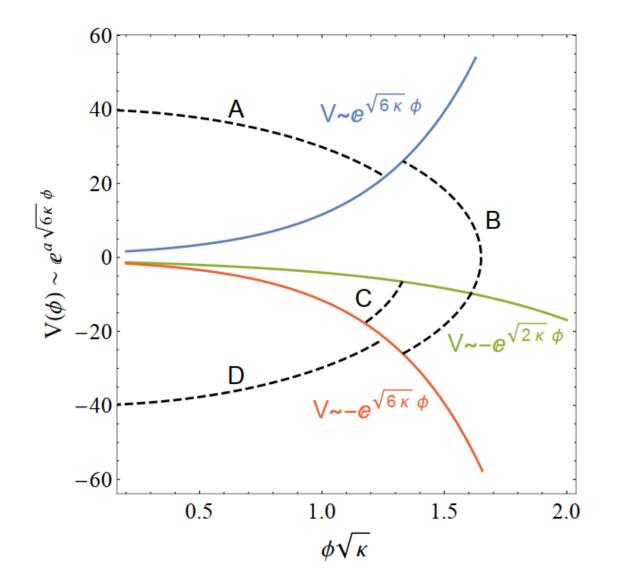
We find an universal behaviour in the limit $\phi(\xi = 0) \rightarrow \infty$

Types of asymptotic decays

$$\begin{array}{c|cccc} \hline \text{Type} & V(\phi \rightarrow \infty) & V_t(\phi \rightarrow \infty) & \text{Constraints} & \beta & \text{Witten's BoN} \\ \hline \text{A} & V_A e^{a\sqrt{6\kappa}\phi} & V_A/(1-a^2)e^{a\sqrt{6\kappa}\phi} & V_A > 0 \ , \ a > 1 & 1/(3a^2) \\ \hline \text{B} & \text{Subleading} & V_{tA} e^{\sqrt{6\kappa}\phi} & V_{tA} < 0 & 1/3 \\ \hline \text{C} & V_A e^{a\sqrt{6\kappa}\phi} & V_A/(1-a^2)e^{a\sqrt{6\kappa}\phi} & V_A < 0 \ , \ 1/\sqrt{3} < a < 1 & 1/(3a^2) \\ \hline \text{D} & V_A e^{a\sqrt{6\kappa}\phi} & (3V_A/2)e^{a\sqrt{6\kappa}\phi} & V_A < 0 \ , \ a > 1 & 1 \\ \hline & ds_4^2 = d\xi^2 + \xi^{2\beta} ds_3^2 \\ \end{array}$$

No flat slices!

Types of asymptotic decays



Example

[Blanco-Pillado, Shlaer, '10]

BoN in $AdS_4 \times S^1$ with the radion stabilized by fluxes

$$S = \int d^{5}x \sqrt{-G} \left[\frac{1}{2\kappa_{5}} R(G) - \frac{1}{2} \partial_{M} \bar{\Phi} \partial^{M} \bar{\Phi} - \frac{\lambda_{5}}{4} (\bar{\Phi} \Phi - \eta_{5}^{2})^{2} - \Lambda_{5} \right] \qquad \Phi(x^{M}) = f_{5}(r)e^{iny}$$

$$ds^{2} = dr^{2} + B^{2}(r)(-dt^{2} + \cosh^{2}t \, d\Omega_{2}^{2}) + r^{2}C^{2}(r)dy^{2}$$
Scalar field

This solution behaves in the same way that Witten's BoN near the core of the bubble (type B)

Asymptotic behaviour: f(r=0) = 0, $f(r=\infty) = f_{\infty}$

To make the solution well defined at the bubble

The solution was interpreted to be a de Sitter solitonic 2-brane in a 5d AdS spacetime

Numerical solution gives a finite action!

Example

As we did with Witten's BoN, we can now compactify the solution to 4d: $rC(r) = L \exp(-\sqrt{2/3}\phi)$

$$S = \int d^4x \sqrt{-g} \left\{ \frac{R(g)}{2} - \frac{(\partial\phi)^2}{2} - \frac{(\partial f)^2}{2} - V(\phi, f) \right\}$$
$$V(\phi, f) = e^{\sqrt{2/3}\phi} \left[\frac{n^2}{2L^2} f^2 e^{2\sqrt{2/3}\phi} + \frac{\lambda}{4} (f^2 - \eta^2)^2 + \Lambda \right]$$
$$f \equiv \sqrt{2\pi L} f_5, \quad \eta \equiv \sqrt{2\pi L} \eta_5, \quad \Lambda \equiv 2\pi L \Lambda_5, \quad \lambda \equiv \lambda_5 / (2\pi L)$$

Asymptotic behaviour: $\phi(r=0) = \infty$, $\phi(r=\infty) = 0$

Multifield solution

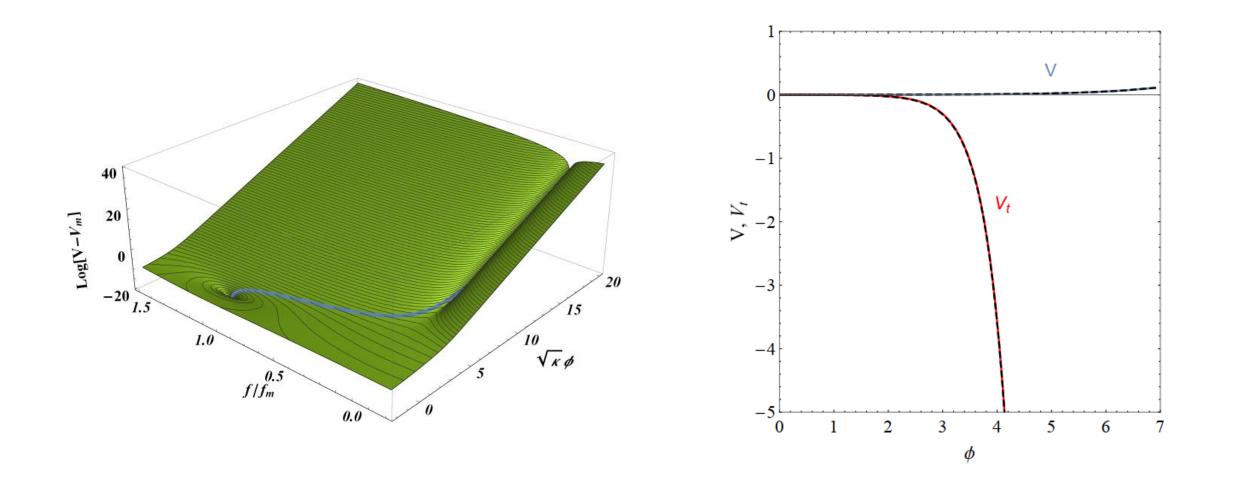
$$V_t(\varphi) = V - \frac{1}{2}\dot{\varphi}^2$$
 $d\varphi^2 \equiv d\phi^2 + df^2$

$$((1+d)V'_t - dV')V'_t = 2d(V_t - V) \left[V''_t + \frac{2\kappa}{d-1} (dV - (d-1)V_t) \right] \qquad 2(V - V_t)\phi'' = \partial V/\partial\phi - \phi'V' \qquad \text{(Multifield)}$$
Near $r = 0$

$$f \simeq f_0 e^{-\sqrt{2/3}\varphi} \qquad \phi \simeq \varphi$$

$$V \simeq \left(\Lambda + \frac{1}{4}\lambda\eta^4 + \frac{n^2 f_0^2}{2L^2}\right) e^{\sqrt{2/3}\phi}, \quad V_t \simeq -\frac{3n^2}{4L^2} e^{\sqrt{6}\phi} \qquad \text{(Type B)}$$

Multifield solution



Final remarks

- The Tunneling Potential Method is a powerful way to study universal properties of general Bubbles of Nothing
- It also makes easier the finding of analytical and numerical solutions
- Makes clear the relation between Bubbles of Nothing and ETW branes in String Theory Dynamical Cobordism

Final remarks

- The Tunneling Potential Method is a powerful way to study universal properties of general Bubbles of Nothing
- It also makes easier the finding of analytical and numerical solutions
- Makes clear the relation between Bubbles of Nothing and ETW branes in String Theory Dynamical Cobordism

Pending questions:

- Investigate the nature of the conical singularity solutions (cannot be obtained by a smooth bubble boundary)
- With the same asymptotic potential V, what type is the preferred decay channel?
- In a landscape with various minima, what decay is more probable, CdL, HM or BoN?

Final remarks

- The Tunneling Potential Method is a powerful way to study universal properties of general Bubbles of Nothing
- It also makes easier the finding of analytical and numerical solutions
- Makes clear the relation between Bubbles of Nothing and ETW branes in String Theory Dynamical Cobordism

Pending questions:

- Investigate the nature of the conical singularity solutions (cannot be obtained by a smooth bubble boundary)
- With the same asymptotic potential V, what type is the preferred decay channel?
- In a landscape with various minima, what decay is more probable, CdL, HM or BoN?

Work in progress, so comments/questions are welcome

Thank you!